Характеристики светодиодов, эксперименты со светодиодами

Преимущества светодиодов

Кроме высокой световой отдачи, малого энергопотребления и возможности получения любого цвета излучения, светодиоды обладают целым рядом других замечательных свойств. Отсутствие нити накала благодаря нетепловой природе излучения светодиодов обусловливает фантастический срок службы. Производители светодиодов декларируют срок службы до 100 тысяч часов, или 11 лет непрерывной работы, – срок, сравнимый с жизненным циклом многих осветительных установок. Отсутствие стеклянной колбы определяет очень высокую механическую прочность и надежность. Малое тепловыделение и низкое питающее напряжение гарантируют высокий уровень безопасности, а безынерционность делает светодиоды незаменимыми, когда нужно высокое быстродействие (например, для стоп-сигналов). Сверхминиатюрность и встроенное светораспределение определяют другие, не менее важные достоинства. Световые приборы на основе светодиодов оказываются неожиданно компактными, плоскими и удобными в установке.

Светотехнические характеристики

Обычно в справочных данных указывается осевая сила света Io светодиода в милликанделлах для заданного значения прямого тока Jпр. Для современных сверхъярких светодиодов значение Io колеблется в пределах 200–5000 мКд (здесь речь идет о стандартных 5миллиметровых светодиодах, для приборов большего размера прямой ток может измеряться сотнями миллиампер и даже амперами, а сила света – десятками канделл). Характер светораспределения определяется углом излучения 2 0,5. Естественно, чем меньше угол излучения, тем больше осевая сила света при том же световом потоке. Обычно указываются также цвет свечения и длина волны излучения. Цветовая температура и общий индекс цветопередачи весьма актуальны для белых светодиодов, применяемых в целях освещения. Производители декларируют Ra до 75–85 (хорошая цветопередача). Еще лучших результатов можно добиться, «синтезируя» белый цвет путем смешения нескольких цветов; при этом белые светодиоды могут использоваться совместно с «цветными».

Электрические характеристики

Электрические характеристики светодиодов очень важны по двум причинам. Во-первых, светодиод должен работать в правильном режиме, чтобы полностью реализовать свой ресурс; во-вторых, яркостью светодиодов можно легко управлять, а если применять смешение цветов, таким же легким становится управление цветом прибора, в состав которого входят светодиоды разных цветов.

Рис. 4. Вольт-амперный характеристики светодиодов и обычных полупроводниковых диодов

Полную информацию о поведении светодиода дает его вольт-амперная характеристика (ВАХ), повторяющая по форме ВАХ обычного кремниевого диода. (Рис. 4.) В случае обратного включения светодиода через него протекает малый ток утечки Ioбр, светодиод при этом не излучает света. Обратное напряжение, приложенное к светодиоду, не должно превышать предельно допустимого обратного напряжения Uобр, иначе возможен пробой p-n перехода. Рабочий режим светодиода отражает правая, круто уходящая вверх часть ВАХ. Очень важно, чтобы ток, протекающий через светодиод, не превышал предельно допустимый прямой ток I пр п.д., в противном случае светодиод выйдет из строя. Току I пр соответствует прямое напряжение Uпр. Светодиоды допускается «запитывать» в импульсном режиме, при этом импульсный ток, протекающий через прибор, может быть выше, чем значения постоянного тока (до 150 мА при длительности импульсов 100 мкс и частоте импульсов 1 кГц). Для управления яркостью светодиодов (и цветом, в случае смешения цветов) используется широтно-импульсная модуляция (ШИМ) – метод, очень распространенный в современной электронике. Это позволяет создавать контроллеры с возможностью плавного изменения яркости (диммеры) и цвета (колорчейнджеры).

Простые эксперименты со светодиодами

Когда у меня в руках впервые появился светодиод, мне захотелось сразу подключить его к батарейке, чтобы увидеть, как он светит. Однако торопиться не следует: в отличие от миниатюрной лампы накаливания от карманного фонаря, светодиод не терпит подобного обращения и может сгореть. Дело в том, что светодиод должен питаться от источника стабилизированного тока; типовое значение тока – 20 мА, рабочий диапазон 100-40 мА. Поэтому для питания светодиода от батарейки необходим гасящий резистор (схема А ). Зная характеристики светодиода и напряжение батарейки, с помощью закона Ома можно легко подсчитать, какое сопротивление должен иметь гасящий резистор. Исходя из ВАХ видно, что для разных типов светодиодов при токе 20 мА мы имеем разное падение напряжения: 2 В для структуры AlGaInP, 4 В для InGaN. Для батарейки 9 В на гасящем резисторе должно в первом случае «упасть» 7 В, что при 20 мА произойдет при значении сопротивления резистора в 7 В / 20 мА=350 Ом. Во втором случае имеем, соответственно, 5 В / 20 мА=250 Ом.

Последовательное включение СД

Светодиоды можно легко объединять в последовательные цепочки. Для увеличения надежности целесообразно последовательно — параллельное включение светодиодов. А как питать от источника переменного тока? Схемы питания от сети переменного напряжения 12 В (схема В). Следует отметить, что при питании от сети частотой 50 Гц может наблюдаться утомительное для глаз мерцание. Приведенные простейшие схемы служат для иллюстрации принципов включения светодиодов, хотя и применяются в некоторых установках. Специально разработанные источники питания обеспечивают оптимальный режим работы светодиодов, включают цепи электронной стабилизации напряжения и защиты от перегрузок.

При подготовке статьи использовались материалы: Л. М. Коган «Светодиоды нового поколения для светосигнальных и осветительных приборов» (брошюра из серии «Новости светотехники» под ред. Ю. Б. Айзенберга)

Материалы компаний: Power Light Systems, «Оптоника», «Студия Cадового Cвета», «Эдлайн» Каталоги компаний: Color Kinetics, OSRAM Optosemiconductors, Lumileds Lighting

Материалы сайтов:

www.osram-os.com

www.lumileds.com

www.ledmuseum.org

www.messefrankfurt.com

www.colorkinetics.com

www.westb.ru